R/predict.landmark.R
predict.landmark.Rd
This function predicts the risk of an event for new data using the landmark model fitted by fit_LME_landmark
or fit_LOCF_landmark
.
The 'event' is defined as event for which event_status
is 1.
# S3 method for landmark
predict(object, x_L, x_hor, newdata, cv_fold = NA, ...)
object | Object inheriting the class |
---|---|
x_L | Numeric specifying the landmark time. This indicates which landmark model in |
x_hor | Numeric specifying the horizon time. The function assesses the risk of event before this time. |
newdata | Data frame containing new data to return the risk prediction of the event of interest. The data should be in in long format
and the columns must contain the covariates and time variables that are used to fit the model.
For the LME model this the variables |
cv_fold | If cross validation is used to fit |
... | Arguments passed on to |
Data frame newdata
updated to contained a new column event_prediction
library(Landmarking)
data(data_repeat_outcomes)
data_model_landmark_LOCF <-
fit_LOCF_landmark(
data_long = data_repeat_outcomes,
x_L = c(60, 61),
x_hor = c(65, 66),
covariates =
c("ethnicity", "smoking", "diabetes", "sbp_stnd", "tchdl_stnd"),
covariates_time =
c(rep("response_time_sbp_stnd", 4), "response_time_tchdl_stnd"),
k = 10,
individual_id = "id",
event_time = "event_time",
event_status = "event_status",
survival_submodel = "cause_specific"
)
#> Warning: 887 individuals have been removed from the model building as they are not in the risk set at landmark age 60
#> Warning: 745 individuals have been removed from the model building as they are not in the risk set at landmark age 61
#> [1] "Fitting longitudinal submodel, landmark age 60"
#> [1] "Complete, landmark age 60"
#> [1] "Fitting survival submodel, landmark age 60"
#> Warning: Loglik converged before variable 2,4 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 2 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 1,3,4 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 2 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 2 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 2 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 2 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 2 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 2 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 2 ; coefficient may be infinite.
#> [1] "Complete, landmark age 60"
#> [1] "Fitting longitudinal submodel, landmark age 61"
#> [1] "Complete, landmark age 61"
#> [1] "Fitting survival submodel, landmark age 61"
#> Warning: Loglik converged before variable 1,3 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 1,3,4 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 1,3,4 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 1,3,4 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 1,3,4 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 1,3,4 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 1,3,4 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 1,3,4 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 1,3,4 ; coefficient may be infinite.
#> Warning: Loglik converged before variable 1,3,4 ; coefficient may be infinite.
#> [1] "Complete, landmark age 61"
newdata <-
rbind(
data.frame(
id = c(3001, 3001, 3001),
response_time_sbp_stnd = c(57, 58, 59),
smoking = c(0, 0, 0),
diabetes = c(0, 0, 0),
ethnicity = c("Indian", "Indian", "Indian"),
sbp_stnd = c(0.45, 0.87, 0.85),
tchdl_stnd = c(-0.7, 0.24, 0.3),
response_time_tchdl_stnd = c(57, 58, 59)
)
)
predict(object=data_model_landmark_LOCF,x_L=60,x_hor=62,newdata=newdata,cv_fold=1)
#> id smoking diabetes ethnicity sbp_stnd tchdl_stnd event_prediction
#> 1: 3001 0 0 Indian 0.85 0.3 0.06472957